FP1級 2017年9月 応用編 問56

【この問題にはが用意されています。読んでから回答してください。】
 Aさん(40歳)は、NISA口座を利用して上場株式と投資信託への投資を行うことを検討している。Aさんは、上場株式については同業種のW社とX社に興味を持ち、下記の財務データを参考にして投資判断したいと考えており、投資信託についてはYファンドとZファンドの購入を考えている。
 そこで、Aさんは、ファイナンシャル・プランナーのMさんに相談することにした。

〈W社とX社の財務データ〉(単位:百万円)
b1.png/image-size:516×511

〈Yファンド・Zファンドの実績収益率・標準偏差・共分散〉
b2.png/image-size:516×86
  • 上記以外の条件は考慮せず、各問に従うこと。

問56

《設例》の〈Yファンド・Zファンドの実績収益率・標準偏差・共分散〉に基づいて、①YファンドとZファンドの相関係数と②YファンドとZファンドをそれぞれ6:4の割合で購入した場合のポートフォリオの標準偏差を、それぞれ求めなさい。〔計算過程〕を示し、〈答〉は表示単位の小数点以下第3位を四捨五入し、小数点以下第2位までを解答すること。
 

正解 

① 0.71
55.5012.50×6.25=0.71(小数点以下第3位四捨五入)
② 9.44(%)
0.62×12.502+0.42×6.252+2×0.6×0.4×55.50
=56.25+6.25+26.64
=89.14
89.14=9.44%(小数点以下第3位四捨五入)

分野

科目:C.金融資産運用
細目:9.ポートフォリオ運用

解説

〔①について〕
2資産の相関係数、標準偏差および共分散には次式の関係があります。

 相関係数=共分散A資産の標準偏差×B資産の標準偏差
 ※分母は%のまま計算します
本問では標準偏差と共分散がわかっているので、2つを使って相関係数を求めます。Yファンドの標準偏差は12.5%、Zファンドの標準偏差は6.25%、共分散は55.5なので、

 55.512.5%×6.25%55.578.125=0.7104
(小数点以下第3位四捨五入)0.71

よって、正解は0.71となります。

※相関係数は-1~+1までの値となることに注意して計算しましょう。

〔②について〕
A・Bという2つの資産から成るポートフォリオの標準偏差は、以下の式で求めます。

 A=標準偏差A×組入比率A
 B=標準偏差B×組入比率B
 分散=A2+B2+(2×A×B×相関係数)
 標準偏差=分散

上記の式にYファンドとZファンドの値を当てはめます。相関係数は①で求めた0.71を使います。

 A=12.5×0.6=7.5
 B=6.25×0.4=2.5
 分散=7.52+2.52+(2×7.5×2.5×0.71)=56.25+6.25+37.5×0.71=89.125
 89.125=9.440…%
(小数点以下第3位四捨五入)9.44%

よって、正解は9.44(%)となります。